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Random Walk
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 Given a graph and a starting point (node), we select a 
neighbor of it at random, and move to this neighbor; 

 Then we select a neighbor of this node and move to it, 
and so on;

 The (random) sequence of nodes selected this way is a 
random walk on the graph
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 When the underlying data has a natural graph 
structure, several physical processes can be conceived 
as a random walk

Data Process

WWW Random surfer

Internet Routing

P2P Search

Social network Information percolation
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 nxn Adjacency matrix A.
▪ A(i,j) = weight on edge from i to j
▪ If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

 nxn Transition matrix P.
▪ P is row stochastic
▪ P(i,j) = probability of stepping on node j from node i= A(i,j)/ΣiA(i,j)

 nxn Laplacian Matrix L.
▪ L(i,j)=ΣiA(i,j)-A(i,j)=> L=D-A
▪ Symmetric positive semi-definite for undirected graphs??
▪ Singular??
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 Positive semi-definite for undirected graphs.
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 Singular
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So, zero is the eigenvalue, and  eigenvalues multiplication is the determinant. 
Therefore, det(L)=0.
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Erdös-Renyi Random graphs
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 𝐺 𝑛, 𝑝 :
▪ Consider a set of nodes 𝑁 = 1,2, … , 𝑛

▪ Connect each pair 𝑖, 𝑗 of nodes with probability 𝑝
▪ The expected number of edges: 𝑛

2
𝑝

▪ The expected degree of nodes: 𝑛 − 1 𝑝

 𝐺(𝑛, 𝑀):

▪ Choose 𝑀 edges out of all 𝑛
2

 pair of nodes: 
𝑛
2
𝑀

 choices

▪ Number of edges: 𝑀

▪ The expected degree of nodes: 𝑀
𝑛
2

× 𝑛 − 1 =
2𝑀

𝑛

Maryam Ramezani Social and Economic Networks 24



 Binomial Distribution:
▪ Consider a sequence of Bernoulli trials. What is the probability of m 

heads out of n flips? 𝑃 𝑑  is:

▪ Expected number of heads: np
▪ The variance: npq = np(1-p) 

▪ Standard deviation: 𝑛𝑝 1 − 𝑝
 Binomial distribution can be approximated by 𝜆 = 𝑛𝑝 for large 𝑛

𝑃 𝑑 ≈
𝑒−𝜆𝜆𝑑

𝑑!
 Highly concentrated around the mean, with a tail that drops exponentially
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 Degree distribution: Binomial distribution
▪ The probability of having d neighboring edges is equal to:

𝑃 𝑑 =
𝑛 − 1

𝑑
𝑝𝑑 1 − 𝑝 𝑛−1−𝑑

 Can be approximated by 𝜆 = 𝑛 − 1 𝑝 = 𝑛𝑝 for large 𝑛

𝑃 𝑑 ≈
𝑒−𝜆𝜆𝑑

𝑑!
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Let’s say a node v has degree k.

𝑪 = 𝒑~
< 𝒌 >

𝒏
As n→∞, clustering goes to 0 in Poisson/Erdős–Rényi graphs, while real-
world networks often maintain high clustering. That’s why we say:
"Erdős–Rényi graphs are poor models for social networks."



 maximum length of shortest paths
▪ To estimate the maximum distance between two nodes, we 

think:
▪ Start from any node.
▪ How many steps do we need until we can reach everyone?

𝜆𝑑 = 𝑛 ⇒ 𝑑 = log𝜆 𝑛 =
log 𝑛

log 𝜆
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 Starting from some vertex v perform a BFS walk
 At each step of the BFS a Poisson process with mean 𝝀, gives 

birth to new nodes
 When 𝝀 <1 this process will stop after O(log n) steps
 When 𝝀 >1, this process will continue for O(n) steps
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 A decade ago, the most elegant theory for modelling 
real-world networks was based on random graphs

 But real-world networks are not random (we will see)
 However, studies on random networks provides 

insights into complex structures
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Watts-Strogatz Model

03
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 Consider a n nodes 
cycle and connect each 
node to its 2𝑚 nearest 
nodes

 For m=2:
▪ Diameter: 𝑛

4

▪ Clustering Coefficient: 1

2
 Diameter is high, while 

the clustering 
coefficient is also high 
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Global Clustering Coefficient
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 Watts & Strogatz show 
that with a few random 
rewiring the diameter 
will be decreased a lot.

 We will speak about 
small-world models 
deeply later
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Why?
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Small-world Network
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 Six degrees of separation: 
although the number of edges 
is low, nodes are reachable 
from each other with small 
number of edges

 Small diameter or Small 
average path length
▪ Weak ties to close dense 

communities
 Highly Clustered

▪ High density of triangles
▪ Homophily & prone to triadic 

closure
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 Structure makes shortest paths 
 Random links make triads
 It is naturally incorrect!
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 Watts & Strogatz model
▪ Structure makes triads
▪ Random links make short distances: Weak ties
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 Consider a grid with additional random links each with 
probability 𝑑 𝑣, 𝑤 −𝑞 in which q is the clustering 
exponent

Social and Economic Networks 55



 Let’s set the clustering coefficient q = 2
 Terms 𝑑2 and 𝑑−2 cancel each other 

and thus the probability that a random 
edge links into some node in this ring is 
approximately independent
of the value of d

 long-range weak ties are being formed 
in a way that’s spread roughly 
uniformly over all different scales of 
resolution
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 Rank-based friendship:
▪ Create (weak) random links 

with probability 𝑟𝑎𝑛𝑘 𝑤 −𝑝

▪ What should p be to have a 
uniform spread of random 
links? 𝑟𝑎𝑛𝑘 approximately is 
𝑑2, thus p should be 
approximately 1
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 Some Experiments
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 Foci-based friendship:
▪ Define the size of the smallest 

focal point that include both of 
v and w as their distance

▪ We again draw random links 
with probability 𝑑𝑖𝑠 𝑣, 𝑤 𝑝 

▪ If focal points are defined as 
the nearest nodes, we may 
again have p = 1
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 Mathematical study of myopic decentralized search in 
a simple Watts-Strogatz model:
▪ A fixed structure: a ring or a grid with empty links
▪ Some additional random links with probability proportional 

to 𝑑 𝑣, 𝑤 −1 with order of outdegree is 1
▪ What is the constant multiplier for link probabilities:
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Markov Graphs &
P* Networks

05
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 Think about building a random graph in which the formation of 
the link ij is correlated with formation of the links jk and ik?

 Frank & Strauss method using Clifford & Hammersley theorem:
▪ Build a graph D whose nodes is the potential links in G
▪ If ij and jk are linked in D, it means that there exist some sort of 

dependency between them
▪ C(D) is the set of D’s cliques
▪ IA G = 1 for A ∈ C(D), A ⊆ G (consider G as a set of edges) and else 

IA G = 0
▪ The probability of a given network G depends only on which cliques of 

D it contains:

log Pr G = ෍

A∈C(D)

αAIA(G) − c
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 An example: a symmetric case
▪ Build a random graph with controllability on the number of 

its edges (𝑛1(𝐺)) and its triads (𝑛3(𝐺))
▪ C(D) consists of 𝑛3(𝐺) triads and 𝑛1(𝐺) edges. So, if we 

weight them equally, we have: 
log Pr 𝐺 = 𝛼1𝑛1 𝐺 + 𝛼3𝑛3 𝐺 − 𝑐

▪ We can calibrate with different parameters to have different 
random networks with different number of triangles and edges. 

▪ 𝛼3 = 0 is the Poisson networks case
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Configuration Model

06
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 A sequence of degrees is given (𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛) and we 
want to build a random graph having these degrees

 We generate the following sequence of numbers

 Randomly pick two number of elements and connect 
corresponding nodes

 The result is a multigraph
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 Form a link between node i and node j with probability 

𝑝 𝑒𝑖𝑗 =
𝑑𝑖𝑑𝑗

σ𝑘 𝑑𝑘
< 1

 Self links are allowed
 The expected degree of node i will be 𝑑𝑖

 Maximum of 𝑑𝑖
2 < σ𝑘 𝑑𝑘
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 Consider the degree sequence < 𝑘, 𝑘, … , 𝑘 > 
 In configuration model:
▪ The probabilities of self links and multi links is negligible
▪ The probability of a node to have degree k will converge to 1

 In expected degree model:
▪ The probability of a node to have degree k will converge to 

whose maximum value is 1/2. 
▪ Why? 
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 Consider a given graph with degree distribution P(d)
 A related calculation ෨𝑃(𝑑): the probability that a randomly chosen edge 

has a (randomly chosen) neighbor with degree d 
 𝑃 𝑑 =  ෨𝑃(𝑑)?

▪ 𝑃 1 = 𝑃 2 =
1

2

▪ ෨𝑃 1 =
2

3
×

1

2
=

1

3

▪ ෨𝑃 2 =
2

3
×

1

2
+

1

3
×

1

1
=

2

3

▪ We can formulate ෨𝑃 𝑑  

෨𝑃 𝑑 =
𝑃 𝑑 𝑑

< 𝑑 >
    See the blackboard 
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 Consider the degree sequence <1,1,2,2,1,1,2,2,…>. 
Compare two cases
▪ In random models such as the configuration model: The 

distribution of the neighboring nodes have the same 
distribution as ෨𝑃(𝑑) for all nodes. 

▪ In networks with correlation properties: The graph is highly 
segregated by degrees
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Preferential Attachment
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 Consider the degree sequence <1,1,2,2,1,1,2,2,…>. 
Compare two cases
▪ In random models such as the configuration model: The 

distribution of the neighboring nodes have the same 
distribution as ෨𝑃(𝑑) for all nodes. 

▪ In networks with correlation properties: The graph is highly 
segregated by degrees
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 𝑃 𝑑 = 𝑐𝑑−𝛾

 log 𝑃 𝑑 = log 𝑐 − 𝛾 log 𝑑

 Features:
▪ Scale-free
▪ Fat tail
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 In many scenarios, richers have more opportunity to get 
richers
▪ More money for investment
▪ Lower risks
▪ More reputation to be involved in activities
▪ ….

 Preferential Attachment: richer-get-richer effect in network 
creation
▪ The probability that page L experiences an increase in popularity 

is directly proportional to L’s current popularity. 
▪ In the sense that links are formed “preferentially” to pages that 

already have high popularity
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 Devise models to simulate preferential attachment processes 
 A basic growing model: 

▪ Nodes are born over time and indexed by their date of birth i ∈ {0, 1, 2 . . 
. , t, . . .}

▪ Upon birth each new node forms m links with pre-existing nodes
▪ It attaches to nodes with probabilities proportional to their degrees. 
▪ the probability that an existing node i receives a new link:

 The interesting fact is that these models leads to networks with 
power-law degree distribution
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 A network model dealing with adding newborn nodes instead of 
statically having the whole network

 Consider a variation of the Poisson random setting
▪ Start with a complete network of m+1 nodes 
▪ Each newborn node choose m nodes from the existing ones and links 

to them 
 A natural study of degree distribution:

▪ The expected degree of a node born at time i, at time t:

𝑚 +
𝑚

𝑖 + 1
+

𝑚

𝑖 + 2
+ ⋯ +

𝑚

𝑡
= 𝑚 1 +

1

𝑖 + 1
+ ⋯ +

1

𝑡
≈ 𝑚 1 + log

𝑡

𝑖

▪ Degree distribution:

𝑚 1 + log
𝑡

𝑖
< 𝑑 ⇒ 𝑖 > 𝑡𝑒1−

𝑑
𝑚
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 A natural study of degree distribution:
▪ The nodes with expected degree less than d are those born 

at time 𝑡𝑒1−
𝑑

𝑚

▪ This is a fraction of  1 −  𝑒1−
𝑑

𝑚 of total t nodes
▪ Thus 

𝐹𝑡 𝑑 = 1 − e−
𝑑−𝑚

𝑚

 Another way: Mean Field Approximation
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 Using expected increase in the number of sth as its 
rate

 Visiting the last example with MFA:
𝑑𝑑𝑖 𝑡

𝑑𝑡
=

𝑚

𝑡
⇒ 𝑑𝑖 𝑡 = 𝑚 + 𝑚 log

𝑡

𝑖

𝑑 = 𝑚 + 𝑚 log
𝑡

𝑖(𝑑)
𝑖 𝑑

𝑡
= 𝑒−

𝑑−𝑚
𝑚

▪ With the same argumentation we have:

𝐹𝑡 𝑑 = 1 − e−
𝑑−𝑚
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 The probability that an existing node i receives a new 
link:

𝑚
𝑑𝑖(𝑡)

σ𝑗=1
𝑡 𝑑𝑗(𝑡)

= 𝑚
𝑑𝑖(𝑡)

2𝑚𝑡
=

𝑑𝑖 𝑡

2𝑡

 Using MFA:
𝑑𝑑𝑖 𝑡

𝑑𝑡
=

𝑑𝑖 𝑡

2𝑡
 With initial condition 𝑑𝑖 𝑖 = 𝑚 we have:

𝑑𝑖 𝑡 = 𝑚
𝑡

𝑖

1
2
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 We have: 
𝑖𝑡 𝑑

𝑡
=

𝑚

𝑑

2

 Thus

𝐹𝑡 𝑑 = 1 − 𝑚2𝑑−2 ⇒ 𝑓𝑡 𝑑 = 2𝑚2𝑑−3

 If the rate changes to 𝑑𝑖 𝑡

𝛾𝑡
 we have:

𝑓𝑡 𝑑 = 𝛾𝑚𝛾𝑑−𝛾−1

Which is a power law distribution
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 Mixing Random & Preferential Attachment:
𝑑𝑑𝑖 𝑡

𝑑𝑡
=

𝛼𝑚

𝑡
+

1 − 𝛼 𝑚𝑑𝑖 𝑡

2𝑚𝑡
=

𝛼𝑚

𝑡
+

1 − 𝛼 𝑑𝑖 𝑡

2𝑡
 By solving the above differential equation we have:
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 By solving the above differential equation we have:

 To have the degree distribution:
▪ If 𝑑𝑖 𝑡 = 𝜙𝑡 𝑖  (the degree of the node with i’th birth)

𝐹𝑡 𝑑 = 1 −
𝜙𝑡

−1 𝑑

𝑡
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Any Question?
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