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What is a Random Walk

Given a graph and a starting point (node), we select @
neighbor of it at random, and move to this neighbor;
Then we select a neighbor of this node and move to it,
and so on;

The (random) sequence of nodes selected this way is
random walk on the graph
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Why are random walks interesting?

When the underlying data has a natural graph
structure, several physical processes can be conceived
as a random walk

WWW Random surfer
Internet Routing
P2P Search

Social network Information percolation



Random walks: definitions

nxn Adjacency matrix A.
A(i,j) = weight on edge from i toj
If the graph is undirected A(i,j)=A(.), i.e. A is symmetric
nxn Transition matrix P.
P is row stochastic
P(i,j) = probability of stepping on node j from node i= A(i,)/ZiA(,)
nxn Laplacian Matrix L.
L(0,)=ZiA3,)-Ax,))=> L=D-A
Symmetric positive semi-definite for undirected graphs??
Singular??



Laplacian Matrix

Positive semi-definite for undirected graphs.

vx € R* z'Lz >0 'Lz = 2" Dz — 27 Az
e 2Dz = > deg(i)xz?
o 2l Az = Zi__j A(’iaj)miiﬁj

' La = Z deg(i)x; — Z A(i, j)xiz;
i ij

1 . )
2’ Lz = 3 ZA(?,:;)(:I:{ —x;)

1,]

A(i,j) >0 mmmp 'Lz >0



Laplacian Matrix

Singular

L-1=(D-A)1=D1- Al

e D1 = deg(i)
e A1l = sum of neighbors = deg(i)
L-1=0

So, zero is the eigenvalue, and eigenvalues multiplication is the determinant.
Therefore, det(L)=0.



Probability Distributions

= X,(i) = probability that the surfer is at node /at time ¢
o xt+1(i).= Z-(I?robability of being at node j)*Pr(j->1)
=3x()*P(,i)

" Xip1 = XP = X ¥P*P= X ,*P*P*P = ... =x, P!

= What happens when the surfer keeps walking for a long
time?
= Stationary distribution:
= When the surfer keeps walking for a long time
= When the distribution does not change anymore, i.e. X;.; = Xy

= For “well-behaved” graphs this does not depend on the start
distribution!!!



What is a stationary distribution?

= The stationary distribution at a node is related to the amount
of time a random walker spends visiting that node.

= Remember that we can write the probability distribution at a
node as

" Xprp = %P
= For the stationary distribution v, we have
" Vo =V,P
= S0, that's just the left eigenvector of the transition matrix!

= Interesting questions:

= Does a stationary distribution always exist? Is it unique? (Yes, if the
graph is “well-behaved”)

= What is “"well-behaved™?

= How fast will the random surfer approach this stationary distribution?
(Mixing Time!)



Well-behaved graphs

= [rreducible: There is a path from every node to every

other node;)‘/'\o.\b7 Q®

Irreducible Not irreducible

= Aperiodic: The GCD of all cycle lengths is 1. The GCD is

also called period. O Q
Q% O/'\és

Periodicity is 3 Aperiodic



Perron Frobenius Theorem

= If a markov chain is irreducible and aperiodic, then the
largest eigenvalue of the transition matrix will be equal to 1
and all the other eigenvalues will be strictly less than 1.

= Let the eigenvalues of P be {c;| i=0:n-1} in non-increasing order
of o, .

= These results imply that for a well behaved graph there
exists an unique stationary distribution.

= The pagerank uses these results.
= We know that

= A connected undirected graph is irreducible

= A connected non-bipartite undirected graph has a stationary
distribution proportional to the degree distribution!

= Makes sense, since larger the degree of the node more, likely a
random walk is to come back to it.



Proximity measures from random walks

= How long does it take to hit node b in a random walk
starting at node a ? Hitting time.

= How long does it take to hit node b and come back to
node a ? Commute time.



Hittingd and Commute times

= Hitting time from node i to node j
= Expected number of hops to hit node j starting at node i
= Is not symmetric. h(a,b) # h(b,a)
* h(i,J) = 1 + Zyenpseay PO, KON(K))
= Commute time between node i and j
= [s expected time to hit node j and come back to i
* c(i,J) = h(i,j) + h(j,i)
= [s symmetric. c(a,b) = c(b,a)



Random graphs

= A deterministic model D defines a single graph
for each value of n (or t)

= A randomized model R defines a probability
space <G.,P> where G, is the set of all graphs of
Ssize n, and P a probability distribution over the
set G, (similarly for t)

= we call this a family of random graphs R, or a random
graph R
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Erdos-Renyi Random graphs

Paul Erdés (1913-1996)

You may have heard about Erdos
number!
What is your Erdés number?




Erdos-Renyi Random graphs

For generation of Erdos-Renyi network, one of the
following methods is used:
1. The G, , model
= input: the number of vertices n, and a parameter p, 0O
<p<sl
= process: for each pair (i,j), generate the edge (i,j)
independently with probability p
2. Related, but not identical: The G, ,, model
= process: select m edges uniformly at random



Erdos-Renyi Random graphs

G(n,p):
Consider a set of nodes N ={1,2, ...,n}
Connect each pair i,j of nodes with probability p

The expected number of edges: (’;)p

The expected degree of nodes: (n — 1)p
G(n,M):

Choose M edges out of all (3) pair of nodes: ((Ig)) choices

Number of edges: M

M 2M

The expected degree of nodes: @ x(n—1)=—



Binomial Distribution

Binomial Distribution:

Consider a sequence of Bernoulli trials. What is the probability of m
heads out of n flips? P(d) is:
n m n—m ;,}

( )p (1—p) /AN

Expected number of heads: np a,:--'tf; %\
The variance: npqg = np(1-p)

Standard deviation: y/np(1 — p)

Binomial distribution can be approximated by A = np for |Orge n |
_Aﬂd
Pld) ~—5,

Highly concentrated around the mean, with a tail that drops exponentially

005




Poisson Networks

Degree distribution: Binomial distribution

The probability of having d neighboring edges is equal to:
n—1

P(d)=( P )pd(l—p)”‘l‘d

Can be approximatedbyd =(n—1)p =np for large n
~19d
e A

Pld) ~ —5




p=0 p=0.1 p=0.2
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Clustering Coefficient

number of links between neighbors of v

(2)

Let’s say a node v has degree k. C, =

k
[E[edges among neighbors| = (2) .

(3)-p
C,= -2 =
G 7
Since (k) = (n — 1)p =~ np, we get: C < k>
p= % - P n

As n—oo, clustering goes to 0 in Poisson/Erdés-Rényi graphs, while real-
world networks often maintain high clustering. That’s why we say:
"Erdés-Rényi graphs are poor models for social networks."”



Diameter

maximum length of shortest paths

To estimate the maximum distance between two nodes, we
think:

Start from any node.
How many steps do we need until we can reach everyone?

logn

d_ u— p—
AM“=n=d=log;n log ]



Phase transition

Starting from some vertex v perform a BFS walk

At each step of the BFS a Poisson process with mean 4, gives
birth to new nodes

When 4 <1 this process will stop after O(log n) steps

When 4 >1, this process will continue for O(n) steps



Are real-world networks random?

A decade ago, the most elegant theory for modelling
real-world networks was based on random graphs
But real-world networks are not random (we will see)
However, studies on random networks provides
insights into complex structures
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Watts-Strogdatz Model

Consider a n nodes
cycle and connect each
node to its 2m nearest
nodes

For m=2:

. n
chmeter' —

Clustering Coefﬂoent =

Diameter is high, while
the clustering
coefficient is also high

Global Clustering Coefficient

3 x number of triangles in the graph

C =

number of connected triples



Watts-Strogdatz Model

Watts & Strogatz show
that with a few random
rewiring the diameter
will be decreased a lot.
We will speak about
small-world models
deeply later




Watts-Strogdatz Model

The construction algorithm:

Consider a ring graph where each node is connected to its m
nearest neighbors with undirected edges

Choose a node and one of the edges that connects it to its
nearest neighbors and then with probability P reconnect this
edge to a node randomly chosen over the graph

= provided that the duplication of edges and self-loops are forbidden

The process is repeated until all nodes and nearest neighbor
connecting edges are met

Next, the edges that connect the nodes to their second-
nearest neighbors are reconnected and the rewiring process is
performed on them with the same conditions as above

The same procedure is then repeated for the remaining
edges connecting the nodes to their m nearest neighbors



Watts-Strogdatz Model
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Clustering Coefficient

= The probability that a connected triple stays connected
after rewiring
= probability that none of the 3 edges were rewired (1-p)3

= probability that edges were rewired back to each other
very small, can ignore . -

: o 1.0 (1-p)®
= Clustering coefficient = C(p) = C(p=0)*(1-p)3
1k 0.8y
eeb \ 0.6}
BERN :
Cpyc© |
0.4 + \ 0.2k
ol > 0.0 pH—- - — L LU LU
e 104 103 1072 1071 10°

p (log scale)



Watts-Strogdatz Model

Reconciling two observations:

* High clustering: my friends’ friends tend to be my friends
* Short average paths

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.



Watts-Strogdatz Model

= The resulting graph is so that
= for the value of P = 0 we will have the original ring graph
= for the value of P = 1 produces a pure random graph

= For some values of P between these two extremes the resulting network
has small characteristics path length ,and at the same time, high
clustering coefficient

= the average degree will be <k> = 2m

Regular: Small World: Random:
High L, High C Low L, High C Low L, Low C

Increasingly random connectivity



Real-world networks

Network size Characteristic | Shortest path Clustering Clustering in

path length in fitted coefficient random
random graph graph

Film actors 225,226 3.65 2.99 0.79 0.00027

MEDLINE co- | 1,520,251 | 4.6 4.91 0.56 1.8 x 104

authorship

E.Coli 282 2.9 3.04 0.32 0.026

substrate

graph

C.Elegans 282 2.65 2.25 0.28 0.05




Newman-Watts model

= Starting with a k-ring graph

= /N nodes

= Non-connected nodes get connected with probability P
= P =1 results in complete graph

= for some small values of P
= small-world property
= high transitivity

= The networks are always connected



Newman-Watts model

20 nodes in a 2-
regular ring with
a)P=0
b) P=0.05
c) P=0.15
d) P=1 R Wy @
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Newman-Watts model

= [t was Longley believed that real-world networks have
random structure

= Milgram did an experiment showing the small-world property

= Watts and Strogtaz showed that many real-world networks:
= Have small characteristic path length compared to random networks

= At the same time, have high clustering coefficient that is much larger
than that of random networks

= The are indeed small-worlds

= This discovery had huge impact on the various developments
in Network fields
= Search in complex networks
= Communication in networks



Milgram’s experiment

= Instructions:
= Given a target individual (stockbroker in Boston), pass the message to a
person you correspond with who is “closest” to the target.
= 160 letters: From Wichita (Kansas) and Omaha (Nebraska) to Sharon (Mass)
= If you do not know the target person on a personal basis, do not
try to contact him directly. Instead, mail this folder to a personal
acquaintance who is more likely than you to know the target
person.
= Qutcome:
= 20% of initiated chains reached
= Target average chain length = 6.5
= "Six degrees of separation”

Milgram, Psych Today 2, 60 (1967)



Milgram’s experiment

144

= "Six degrees of separation

= The Small World concept
in simple terms describes
the fact despite their often
large size, in most
networks there is a
relatively short path

between any two nodes.

s i

=< 2 N ‘ ‘ { Total no. of,

e e T ’Chalns 44J

O —

o .

No. of 1 - ‘
Completed 6 — -~
Chains +
4 —|

2 | ——

sl 1 LLT I T T TN}

(o) 2 4 6 8 10 12

No. of Intermediaries needed
to reach Target Person

In the Nebraska Study the chains varied
from two to 10 intermediate acquaintances
with the median at five.



Milgram’s experiment repeated

= Email experiment by Dodds,
Muhamad, Watts, Science

301 (2003):

18 targets

13 different countries

More than 60,000 participants
24,163 message chains

384 reached their targets
Average path length 4.0

Source: NASA, U.S. Government; http://visibleearth.nasa.gov/view_rec.php?id=2429



Applicable to other networks?

Same pattern: ¢
high clustering ‘network

>>(

‘randongraph

low average shortest path Znetwork ~ IH(N )

of course in many social networks
neural network of C. elegans,
Human brain

semantic networks of languages,
actor collaboration graph

food webs

Power grids



Small Worlds

Six degrees of separation:
although the number of edges
is low, nodes are reachable
from each other with small
number of edges
Small diameter or Small
average path length
Weak ties to close dense
communities

Highly Clustered
High density of triangles

Homophily & prone to triadic
closure



Structure + Randomness

Structure makes shortest paths
Random links make triads
't is naturally incorrect!

AN

ORI

/o 4 S5 N g B Yy  friends of your friends




Structure + Randomness

Watts & Strogatz model
Structure makes triads
Random links make short distances: Weak ties




Watts-Strogatz Models for Decentralized Search

Consider a grid with additional random links each with
probobllltg d(v,w)™4 in which gis the clustering

expo 2 .
® (=)
525 RN, o
s ‘ “ ) 0 _ooooo ]
o
ﬁ.,m.l e,
o, °
o
5.0§ ; °o°oo°




Watts-Strogatz Models for Decentralized Search

Let’s set the clustering coefficient g = 2 anR? X —
Terms d? and d~4 cancel each other
and thus the probability that a random
edge links into some node in this ring is
approximately independent

of the value of d

long-range weak ties are being formed
in a way that’s spread roughly
uniformly over all different scales of
resolution

number of nodes is

proportional to d2

probability of linking to
each is proportional to 42



Watts-Strogatz Models for Decentralized Search

Rank-based friendship:

Create (weak) random links
with probability rank(w)~P
What should p be to have a
uniform spread of random
inks? rank approximately is

d?, thus p should be
approximately 1

distance d

rank ~ d 2



Watts-Strogatz Models for Decentralized Search

Some Experiments
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rank r




Watts-Strogatz Models for Decentralized Search

Foci-based friendship:

Define the size of the smallest
focal point that include both of
v and w as their distance

We again draw random links
with probability dis(v, w)P

If focal points are defined as
the nearest nodes, we may
again have p =1




Watts-Strogatz Models for Decentralized Search

Mathematical study of myopic decentralized search in
a simple Watts-Strogatz model:

A fixed structure: a ring or a grid with empty links

Some additional random links with probability proportional
to d(v,w) ™1 with order of outdegree is 1

What is the constant multiplier for link probabilities:

1 1 1 1
Z<2(1+=4+-4+-4- 4+ —
< (+2+3+4+ +n/2)

Z <2+ 2logy(n/2) =2+ 2(logyn) — 2(log, 2) = 2log, n

1 1
—d(v,w)™" >

d —1
Z — 2logn (v,w)
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Markov Graphs & P* Networks

Think about building a random graph in which the formation of
the link ij is correlated with formation of the links jk and ik?
Frank & Strauss method using Clifford & Hommersley theorem:
Build a graph D whose nodes is the potential links in G
If ij and jk are linked in D, it means that there exist some sort of
dependency between them
C(D) is the set of D’s cliques
%Agg% = (1) for A € C(D), A € G (consider G as a set of edges) and else
A(G) =
The probability of a given network G depends only on which cliques of
D it contains:

log(Pr{GD = ) aala(G) —

A€eC(D)



Markov Graphs & P* Networks

An example: a symmetric case
Build a random graph with controllability on the number of
its edges (n4(G)) and its triads (n3(G))
C(D) consists of n3(G) triads and n,(G) edges. So, it we

weight them equally, we have:
log(Pr(G)) = a;n{(G) + azn3(G) —c¢

We can calibrate with different parameters to have different
random networks with different number of triangles and edges.

a3 = 0 is the Poisson networks case
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The Configuration Model

A sequence of degrees is given (dq,d,,d5, ...,d,;) and we
want to build a random graph having these degrees
We generate the following sequence of numbers

LL,L,L,L,L,LLLLLL1 2,2,2,2,2,2

'

d entries d» entries

n,n,n,n,n,n,n, N, N, N, N, N .

- -

d, entries

Randomly pick two number of elements and connect
corresponding nodes
The result is a multigraph



An Expected Degree Model

Form a link between node /and node j with probability
(e;)) = =% < 4
PREU 2 A
Self links are allowed
The expected degree of node /will be d;
Maximum of d? < ¥, dy




Configuration Model vs Expected Degree Model

Consider the degree sequence < k, k, ...,k >
In configuration model:
The probabilities of self links and multi links is negligible

The probability of a node to have degree k will converge to 1
In expected degree model:

The probability of a node to have degree k will converge to

e—k(k)k
k!
whose maximum value is 1/2.

why?




Distribution of the Degree of Neighboring Nodes

Consider a given graph with degree distribution A(@)

A related calculation P(d): the probability that a randomly chosen edge
has a (randomly chosen) neighbor with degree d

P(d) = P(d)?
P(1) = P(2) =§ 3 !
Pﬂ)——x—:§
P(2)=x-+-x==2
We can formulate P(d)
-2

See the blackboard

Y
d



Distribution of the Degree of Neighboring Nodes

Consider the degree sequence <1,1,2,2,11,2,2,..>.
Compare two cases

In random models such as the configuration model: The
distribution of the neighboring nodes have the same
distribution as P(d) for all nodes.

In networks with correlation properties: The graph is highly
segregated by degrees | ; ; |
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Distribution of the Degree of Neighboring Nodes

Consider the degree sequence <1,1,2,2,11,2,2,..>.
Compare two cases

In random models such as the configuration model: The
distribution of the neighboring nodes have the same
distribution as P(d) for all nodes.

In networks with correlation properties: The graph is highly
segregated by degrees | ; ; |




Power Law Degree Distribution

In-degree (total, remote-only? distr.

P(d) — Cd_y le+1d , | |
e+B@9 [otal in-degree _
log(P(d)) = log(c) — ylog(d).... | ver 1au; expanent 2.05 ——
Features: o7 % ]
L le+H5
Scale-free . oo
Fat tail E 1 BEED
S  1pE06
- 16A
1A
11 14 184 188884

in—degree



Richer-Get-Richer § Preferential

Attachment

IN Many scenarios, richers have more opportunity to get
richers

More money for investment
Lower risks

More reputation to be involved in activities

Preferential Attachment: richer-get-richer effect in network
creation

The probability that page L experiences an increase in popularity
is directly proportional to L's current popularity.

In the sense that links are formed “preferentially” to pages that
already have high popularity



Preferential Attachment Models

Devise models to simulate preferential attachment processes
A basic growing model:

Nodes are born over time and indexed by their date of birth /€ {0,1, 2 ..

Upon birth each new node forms m links with pre-existing nodes
It attaches to nodes with probabilities proportional to their degrees.
the probability that an existing node /receives a new link:
- d;(t)
Y di )
The interesting fact is that these models leads to networks with
power-law degree distribution




Growing Models

A network model dealing with adding newborn nodes instead of
statically having the whole network

Consider a variation of the Poisson random setting
Start with a complete network of m+1 nodes

Each newborn node choose m nodes from the existing ones and links
to them

A natural study of degree distribution:
The expected degree of a node born at time i, at time t:

m m m 1 1 t
m + - + - +-t+—=m|1+- + o+ - zm(1+log(—_))
i+1 i+2 t I+ 1 t [

Degree distribution:

t _ a4
m(1+10g(z)) <d=>i>te m




Growing Models

A natural study of degree distribution:

The nodes with expected degree less than d are those born
d

at time te1 m

d
This is a fraction of 1 — e m of total t nodes

Thus

d—m

Fid)=1—e m
Another way: Mean Field Approximation



Mean Field Approximation

Using expected increase in the number of sth as its

rate
Visiting the last example with MFA:
dd;(t) m B t
et ?:di(t) =m+ mlog(;)
t
d=m+ mlog (@)
i(d) _d-m
— =2 m

t

With the saome argumentation we have:
d—m

F.(d) = 1= "m




Basic Preferential Attachment Model

The probability that an existing node /receives a new
link:
d;(t) di(t) d;(t)

m = m —
t-1di(®) 2mt 2t

Using MFA:
dd;(t) d;(t)

dt 2t
With initial condition d;(i) = m we have:

1
-



Basic Preferential Attachment Model

We have:
it(d) _ (m)z

. _

d
Thus

F,(d)=1—-—m?d ?= f,(d) = 2m?d~3

f the rate changes to d)"/(tt) we have:

fe(d) = ym¥d=r—1
Which is a power law distribution




Hybrid Preferential Attachment Models

Mixing Random & Preferential Attachment:
ddi(t) am (1 —-a)md;(t) am (1-—a)d;(t)

-+ -+
dt t 2mt t 2t
By solving the above differential equation we have:

(1—)/2
dy(1) = ¢,(i) = (do 2o ) (f) ' 2am

— o [ ]l —«




Hybrid Preferential Attachment Models

By solving the above differential equation we have:

(1—e)/2
d;(t) = ¢,(i) = do + 12“’" g) - 12“’"
To have the degree distributio :

n.
If d;(t) = ¢:(i) (the degree of the node with i'th birth)

¢z 1 (d)
t

2am \ 2/(1—a) m 4 2am\ #/1~)
¢ (d) =1 (do " 1“) F(d)=1- ( lo’)
_|_

2
d+ 1=,

Fo(d) =1—




Graph Properties

= A property P holds almost surely (or for almost every

graph), if
lim P|G has P|=1

= Evolution of the S%bh: which properties hold as the
probability p increases?
= different from the evolving graphs that we will see in the future
lectures
= Threshold phenomena: Many properties appear
suddenly. That is, there exist a probability p. such that

for p<p. the property does not hold and for p>p_ the
property holds.



Any Question?
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